Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ooi, Boon S (Ed.)An energy/area-efficient low-cost broadband linearity enhancement technique using the hybrid of notch-filter and bandpass-filter micro-ring modulators (Hybrid-MRMs) is proposed to achieve higher than 3.01-dB improvement in spurious-free-dynamic-ranges with intermodulation distortions (dSFDRIMD) and 17.9-dB improvement in integral nonlinearity (dINLPP) over a conventional notch-filter MRM (NF-MRM) across a 4.8-dB extinction-ratio full-scale range based on rapid silicon-photonics fabrication results for the emerging applications of various analog and digital optical communication systems.more » « less
-
This study proposes a novel technique for a 2D beam steering system using hybrid plasmonic phase shifters with a cylindrical configuration in a 2D periodic array suitable for LIDAR applications. A nanoscale VCSEP design facilitates a sub-wavelength spacing between individual phase shifters, yielding an expanded field of view and side lobes suppression. The proposed design includes a highly doped sub-micron silicon pillar covered by a thin layer of nonlinear material and an additional conductive metal layer. Characterization of a single VCSEP demonstrated a Free Spectral Range (FSR) of 53.28 ± 2.5 nm and a transmission variation of 3 dB, with VπL equal to 0.075 V-mm.more » « less
-
Abstract Phase‐sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous‐wave (CW) visible light (405 and 520 nm) trimming of plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS‐compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost‐effective setup for real‐time resonance tracking in micro‐ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10−2. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase‐sensitive integrated photonic devices.more » « less
-
The design, fabrication, and characterization of a 16-element optical phased array (OPA) using a high index (n = 3.1) silicon-rich silicon nitride (SRN) is demonstrated. We present one-dimensional beam steering with end-fire facet antennas over a wide steering range of >115° at a fixed wavelength of 1525 nm. A beam width of 6.3° has been measured at boresight, consistent with theory. We demonstrate SRN as a viable material choice for chip-scale OPA applications due to its high thermo-optic coefficient, high optical power handling capacity [negligible two-photon absorption (TPA)], wide transparency window, and CMOS compatibility.more » « less
-
There is little literature characterizing the temperature-dependent thermo-optic coefficient (TOC) for low pressure chemical vapor deposition (LPCVD) silicon nitride or plasma enhanced chemical vapor deposition (PECVD) silicon dioxide at temperatures above 300 K. In this study, we characterize these material TOC’s from approximately 300-460 K, yielding values of (2.51 ± 0.08) · 10−5K−1for silicon nitride and (5.67 ± 0.53) · 10−6K−1for silicon oxide at room temperature (300 K). We use a simplified experimental setup and apply an analytical technique to account for thermal expansion during the extraction process. We also show that the waveguide geometry and method used to determine the resonant wavelength have a substantial impact on the precision of our results, a fact which can be used to improve the precision of numerous ring resonator index sensing experiments.more » « less
-
Abstract Background Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. Findings Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. Conclusion The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology.more » « less
An official website of the United States government
